首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   77篇
  国内免费   2篇
  2023年   19篇
  2022年   23篇
  2021年   36篇
  2020年   33篇
  2019年   32篇
  2018年   21篇
  2017年   19篇
  2016年   16篇
  2015年   34篇
  2014年   32篇
  2013年   45篇
  2012年   27篇
  2011年   21篇
  2010年   24篇
  2009年   17篇
  2008年   15篇
  2007年   12篇
  2006年   14篇
  2005年   7篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
71.
Analysis of biochemicals in single cells is important for understanding cell metabolism, cell cycle, adaptation, disease states, etc. Even the same cell types exhibit heterogeneous biochemical makeup depending on their physiological conditions and interactions with the environment. Conventional methods of mass spectrometry (MS) used for the analysis of biomolecules in single cells rely on extensive sample preparation. Removing the cells from their natural environment and extensive sample processing could lead to changes in the cellular composition. Ambient ionization methods enable the analysis of samples in their native environment and without extensive sample preparation.1 The techniques based on the mid infrared (mid-IR) laser ablation of biological materials at 2.94 μm wavelength utilize the sudden excitation of water that results in phase explosion.2 Ambient ionization techniques based on mid-IR laser radiation, such as laser ablation electrospray ionization (LAESI) and atmospheric pressure infrared matrix-assisted laser desorption ionization (AP IR-MALDI), have successfully demonstrated the ability to directly analyze water-rich tissues and biofluids at atmospheric pressure.3-11 In LAESI the mid-IR laser ablation plume that mostly consists of neutral particulate matter from the sample coalesces with highly charged electrospray droplets to produce ions. Recently, mid-IR ablation of single cells was performed by delivering the mid-IR radiation through an etched fiber. The plume generated from this ablation was postionized by an electrospray enabling the analysis of diverse metabolites in single cells by LAESI-MS.12 This article describes the detailed protocol for single cell analysis using LAESI-MS. The presented video demonstrates the analysis of a single epidermal cell from the skin of an Allium cepa bulb. The schematic of the system is shown in Figure 1. A representative example of single cell ablation and a LAESI mass spectrum from the cell are provided in Figure 2.  相似文献   
72.
Radiation is used in medicine to diagnose and treat diseases but it can also cause harm to the body by burning or mutation. This depends on whether the radiation is ionizing or nonionizing. Despite its vast applications in surgery, dermatology and cosmetics, little is taught and thus known about non-ionizing radiation.This review article discusses the fundamentals of non-ionizing electromagnetic radiations. The main aim is to extensively explain the different types of non-ionizing radiation. This will equip students and medical personnel with knowledge on different medical applications and expose them to a variety of specializations in medicine that utilize non-ionizing radiation. The article discusses the physics, hazard, means of protection and medical application of each type of radiation: ultraviolet radiation, light (both visible light and LASER), infrared radiation, microwaves and extremely low frequency radiation separately. It presents these terms in a simple manner that avoids rigors mathematics and physics, which makes them comprehensible for medical students.The development of new diagnostic and therapeutic approaches could also lead to increased hazards to the body unless they are treated with precaution. If not adequately monitored, a significant health risk may be posed to potentially exposed employees. Hence proper dosage should be used for non-ionizing radiation. This is only possible through understanding of the risks/benefits of these radiations by studying the physics and radiobiological effects of each individual radiation.  相似文献   
73.
74.
During the last several decades, numerous studies have been performed aiming at the question of whether or not exposure to radiofrequency radiation (RFR) influences the permeability of the blood-brain barrier (BBB). The objective of this study was to investigate the effect of RFR on the permeability of BBB in male and female Wistar albino rats. Right brain, left brain, cerebellum, and total brain were analyzed separately in the study. Rats were exposed to 0.9 and 1.8 GHz continuous-wave (CW) RFR for 20 min (at SARs of 4.26 mW/kg and 1.46 mW/kg, respectively) while under anesthesia. Control rats were sham-exposed. Disruption of BBB integrity was detected spectrophotometrically using the Evans-blue dye, which has been used as a BBB tracer and is known to be bound to serum albumin. Right brain, left brain, cerebellum, and total brain were evaluated for BBB permeability. In female rats, no albumin extravasation was found in in the brain after RFR exposure. A significant increase in albumin was found in the brains of the RF-exposed male rats when compared to sham-exposed male brains. These results suggest that exposure to 0.9 and 1.8 GHz CW RFR at levels below the international limits can affect the vascular permeability in the brain of male rats. The possible risk of RFR exposure in humans is a major concern for the society. Thus, this topic should be investigated more thoroughly in the future.  相似文献   
75.
The physical, chemical and optical properties of nano-scale colloids depend on their material composition, size and shape 1-5. There is a great interest in using nano-colloids for photo-thermal ablation, drug delivery and many other biomedical applications 6. Gold is particularly used because of its low toxicity 7-9. A property of metal nano-colloids is that they can have a strong surface plasmon resonance 10. The peak of the surface plasmon resonance mode depends on the structure and composition of the metal nano-colloids. Since the surface plasmon resonance mode is stimulated with light there is a need to have the peak absorbance in the near infrared where biological tissue transmissivity is maximal 11, 12.We present a method to synthesize star shaped colloidal gold, also known as star shaped nanoparticles 13-15 or nanostars 16. This method is based on a solution containing silver seeds that are used as the nucleating agent for anisotropic growth of gold colloids 17-22. Scanning electron microscopy (SEM) analysis of the resulting gold colloid showed that 70 % of the nanostructures were nanostars. The other 30 % of the particles were amorphous clusters of decahedra and rhomboids. The absorbance peak of the nanostars was detected to be in the near infrared (840 nm). Thus, our method produces gold nanostars suitable for biomedical applications, particularly for photo-thermal ablation.  相似文献   
76.
77.
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号